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Abstract. We have investigated several models of Pomeron and Odderon contributions to high energy
elastic pp and p̄p scattering. The questions we address concern their role in this field, the behavior of
the scattering amplitude (or of the total cross-section) at high energy, and how to fit all high energy
elastic data. The data are quite well reproduced by our approach at all momenta and for sufficiently high
energies. The relative virtues of Born amplitudes and of different kinds of eikonalizations are considered.
An important point in this respect is that secondary structures are predicted in the differential cross-sec-
tions at increasing energies and these phenomena appear to be quite directly related to the procedure
of eikonalizing the various Born amplitudes. We conclude that these secondary structures arise naturally
within the eikonalized procedure (although their precise localization turns out to be model dependent).
The fitting procedure naturally predicts the appearance of a zero at small |t| in the real part of the even
amplitude as anticipated by general theorems. We would like to stress, once again, how important it would
be to have at LHC both pp and pp̄ options for many questions connected to the general properties of high
energy hadronic physics and for a check of our predictions.

1 Introduction

A few years ago [1], combining several of the currently
used philosophies, a high quality description of existing
high energy elastic pp and p̄p scattering data was obtained.
The main lessons of this study performed at the Born level
were:
(1) an Odderon contribution is absolutely necessary to
quantitatively reproduce the data well; while its presence
is not explicitly needed at t = 0, its inclusion is necessary
to have a good fit of the other |t| data, specially in the
dip region and in the high-|t| domain (as already shown
in [2]);
(2) hints are found that secondary structures (diffraction-
like) develop in angular distributions with increasing en-
ergies at intermediate |t| values in both pp and pp̄ angular
distributions (earlier predictions of secondary structures
are made in [3]).

In particular, it was suggested that such structure ef-
fects should be well visible at LHC while only extremely
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precise data could perhaps show the effect at RHIC ener-
gies.

However, answers to some important points are still
incomplete. In particular, what is a good model for the
Pomeron? What is the behavior of the scattering ampli-
tude at high (“asymptotic”) energy? Are large-|t| data
dominated by the Odderon? Better, does a special crite-
rion exist proving the presence of the Odderon? Can one
settle the question about the sign of αO(0)− 1 ≡ δO con-
cerning the intercept1 of the Odderon? Are secondary
structures always predicted at large |t| when s increases,
i.e. do they arise “naturally” and are they model depen-
dent? What is the rôle of eikonalization? Does an ampli-
tude that fits the data well automatically exhibit a zero
in the real part of the even component of the amplitude,
as required by general theorems [8]?

1 Originally [4] it was claimed that δO > 0. More recently,
counterarguments have been given [5] to suggest that δO should
be negative. This possibility had been anticipated in [1] on
purely phenomenological grounds and, subsequently, we have
found that such a requirement is, in general, a consequence
of unitarity [6]. However, the latest QCD calculation [7] gives
δO = 0
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Only partial answers presently exist (see [9] and refer-
ences therein).

The Pomeron remains a most mysterious entity in spite
of its resurgence from diffractive deep inelastic scattering
(DDIS) data2. Many models, however, exist and we are go-
ing to probe a few. Even at low |t| (first diffraction cone),
it has been shown [12] that existing data do not allow
one to select among Pomeron models. The present data
are, very likely, not yet asymptotic; this (see [13] and ref-
erences therein) makes it very difficult with the existing
data to establish a definite asymptotic behavior for the
amplitude.

The rôle of eikonalization has not been fully clarified
in spite of having been investigated by many authors [14],
but many results have been obtained recently [15,6].

The Odderon is instrumental in reproducing the large-
|t| data. While t = 0 data are presumably dominated by
the Pomeron, which in this region hides the Odderon, very
precise data could be useful to shed light on its existence
[16].

Predictions of secondary structures have appeared
many times in the past [3]. The large spectrum of pre-
dictions in the position of these secondary dips shows
that things are actually more complicated than antici-
pated long ago [17]. It is not enough that a given scheme
inherently generates oscillations (like the Bessel function
of an impact parameter representation); interference ef-
fects are very important in determining their position. The
model dependence of these predictions, however, is not so
important; it is the prediction itself of the existence of
secondary structures which matters.

In this paper, four of the above points are taken into
special consideration. The first is the investigation of the
rôle and properties of the different varieties of eikonal-
ization procedures one can devise. The second concerns
the appearance of secondary dips and structures. These
two points are strictly interconnected, the second being,
to some extent, the physical counterpart of the other. The
third is devoted to the behavior of the real part of the
even amplitude close to zero. The fourth concerns the rôle
of the Odderon in the construction of the amplitude and
in the reproduction of the data.

The eikonalization procedure and its consequences is
one of the principal subjects we discuss in this paper. We
briefly revise (in Sect. 3) the ordinary eikonalization (OE)
and, after (re-) discovering its limits, we proceed to discuss
a one-parameter generalization called quasi-eikonalization
(QE) [14] and to propose a three-parameter extension
which we term generalized eikonalization (GE) (see [6]).
Although a useful tool to alleviate the violations of s-
channel unitarity at some level (as emphasized in [15]),
eikonalization does not mean unitarization.

The effects of ordinary eikonalization as compared to
the use of the Born amplitude have been studied within a
pure Pomeron model (without aiming at quantitatively re-
producing the data), and also in a “more realistic” model
including Pomeron, Odderon and secondary Reggeons, fit-
ted to the high energy data for pp and p̄p elastic scattering

2 For an update on the subject, see e.g. [10,11]

[18]. The somewhat surprising results of this “realistic”
approach were:
(i) a failure to find within the eikonalized model a fit of
the same high quality as within the Born approximation
[19], even when readjusting the parameters and even when
confining oneself to the ISR data, limited to low |t|;
(ii) a rapid numerical convergence of the rescattering se-
ries: a limited number of rescatterings (four, in addition
to the Born term) is sufficient to obtain a very good ap-
proximation at present energies;
(iii) when rescattering corrections were taken into account,
a second break in the slope revealed around |t| ∼ 4GeV2

in the angular distribution at 300–500GeV, creating the
seed of a diffraction-type pattern at higher energies; this
break becomes a shoulder and then a true dip moving
down to |t| ∼ 3GeV2 when s1/2 increases up to 14TeV.
This substructure should be seen at LHC but might even
be detected at RHIC [20] if the data are very precise.

Going one step further, the one-parameter extension
(QE) and much more, the three-parameters generalization
(GE) prove very useful to improve the agreement with the
data and, therefore, in removing the conflict found in (i)
above. In addition, it helps in understanding the appear-
ance of secondary structures, which stirred considerable
interest and which is intriguing enough that we should
reconsider further both their origin and their model de-
pendence. The variety of descriptions giving rise to these
diffraction-like multiple structures may suggest them to
be essentially model independent; on the other hand, this
is not established in an unambiguous way and deserves
further theoretical analysis3. In the light of this, we have
undertaken a most careful analysis of several models both
eikonalized and in the Born approximation, trying to as-
certain whether or not the predictions of secondary struc-
tures could be related to some general pattern. Byprod-
ucts of our investigation turn out to be the verification
that the Odderon intercept αO(0) − 1 ≡ δO obtained in
the various fits is invariably non-positive and empirically
close to zero, and that the real part of the even amplitude
has the zero predicted by general theorems [8] near |t| = 0.

In Sect. 2, we report about several non-eikonalized
models with some details on their specific Pomeron and
Odderon components. In Sect. 3, we do the same with OE,
QE and GE. The results are presented in Sect. 4; some
general conclusions are given in Sect. 5.

2 The input Born

We focus on the (dimensionless) crossing-even and -odd
amplitudes a±(s, t) of the pp and p̄p reactions4

3 We stress once more that several models of pp and p̄p elastic
scattering (see e.g. [1,3,18]) have given hints, in the past, of
the possible appearance of a succession of dips or shoulders in
the angular distributions, at large-|t| values and at superhigh
energies

4 Here and in the following, we denote by lower case letters
the Born (or input) amplitudes and by the corresponding cap-
ital letters their eikonalized counterparts
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ap̄p
pp(s, t) = a+(s, t) ± a−(s, t), (1)

for which we have data5 on
(i) total cross-sections:

σt =
4π
s
�mA(s, t = 0), (2)

(ii) differential cross-sections:

dσ
dt

=
π

s2 |A(s, t)|2, (3)

(iii) ratio of the real to the imaginary forward amplitudes

ρ =
�eA(s, t = 0)
�mA(s, t = 0)

. (4)

The crossing-even part in the Born amplitude is a Pomeron
(to which an f Reggeon is added) while the crossing-odd
part is an Odderon (plus an ω Reggeon)

a+(s, t) = aP (s, t) + af (s, t),
a−(s, t) = aO(s, t) + aω(s, t). (5)

For simplicity the two Reggeons have been taken in
the standard form

aR(s, t) = aRs̃αR(t)ebRt, αR(t) = αR(0) + α′
Rt,

R = f and ω, (6)

where af (aω) is real (imaginary). We begin with trajecto-
ries whose parameters are fixed as in previous works (for
example [1]) αf (t) = 0.69+0.84t, and αω(t) = 0.47+0.93t
(with t in GeV2), close to the values obtained in other re-
cent fits (e.g. [21]). It turns out, however, that a best fit
requires some variation of these parameters. Thus, at the
price of economy in the parameters, we end up letting
them vary.

We have investigated wide classes of choices where the
input amplitude (“Born term”) for the Pomeron aP (s, t)
and for the Odderon aO(s, t) is either a monopole (i.e.
a simple pole in the angular momentum J plane) or a
“dipole” (i.e. a linear combination of a simple pole with
a double pole).

The forms of aP (s, t) in the case of a monopole (M)
and of a dipole (D) are

a
(M)
P (s, t) = aP s̃αP (t)ebP t, (7)

and

a
(D)
P (s, t) = aP s̃αP (t)

[
ebP (αP (t)−1)(bP + ln s̃) + dP ln s̃

]
,

(8)

5 For all versions, we fitted the adjustable parameters over a
set of ∼ 1000 pp and p̄p data of both forward observables (total
cross-sections σt and ρ ratios of real to imaginary part of the
amplitude) in the range 4 ≤ s1/2 (GeV)≤ 1800 and angular
distributions (dσ/dt) in the ranges 23 ≤ s1/2 (GeV)≤ 630 and
0 ≤ |t| ≤ 14GeV2. The references to the original literature can
be found in [1]

where aP is real. The difference between a monopole and
a dipole results in an amplitude for the second that grows
with an additional power of ln s.

The Odderon may be constructed with the same re-
quirements. It is, however, known that the rôle of the Odd-
eron at t = 0 is negligible but no theoretical prescription
is known as to how to cut it. A simple way out is to multi-
ply the monopole or dipole form by a convenient damping
factor. We choose

aO(s, t) = (1− exp γt)a(M)
O (s, t), (9)

or
aO(s, t) = (1− exp γt)a(D)

O (s, t). (10)

In (9) (or (10)), the amplitude on the r.h.s. is constructed
along the same lines as in (7) (or (8)) for a(M,D)

P (s, t). aP ,
however, is real while aO is imaginary. As usual,

s̃ =
s

s0
e−i π

2 , s0 = 1GeV2, (11)

enforces s–u crossing and αi(t) are the trajectories taken,
for simplicity, of the linear form6

αi(t) = 1 + δi + α′
it, i = P,O. (12)

It appears impossible to discriminate between (D) or
(M), on general grounds; only the phenomenological re-
sults seem to prefer (D) over (M). For the sake of economy
we confine our presentation to the dipole case, which gives
somewhat better phenomenological results.

Some authors maintain that a perturbative (a large-|t|)
term behaving like |t|−4 (and complying with perturbative
QCD requirements according to [2]7) is to be added to the
Odderon. When the Born amplitude is eikonalized, how-
ever, all rescattering corrections implied by eikonalization
are, in principle, already taken into account. Adding an-
other large-|t| term at the Born level would mimic further
rescattering corrections and would lead to double count-
ing in the eikonalized models. We shall not consider this
option.

We remark that most good fits require δP > 0, imply-
ing what is known as a supercritical Born Pomeron i.e.
a Born amplitude which, taken at face value, will eventu-
ally exceed the Froissart–Martin [22] unitarity bound even
though at extremely high energies (other kinds of troubles
would arise much earlier [23]). This special violation of
unitarity is removed by all kinds of eikonalization. Never-
theless, one must verify that the unitarity constraints

δP ≥ δO, and α′
P ≥ α′

O. (13)

are satisfied (see [15,24]). The slope parameter for the
Pomeron, finally, is expected to be in the vicinity of its

6 Linear trajectories are an oversimplification that, strictly,
violates analyticity. In addition, at large |t| this may be dan-
gerous in practice. We ignore this complication

7 We should, however, not forget that, even at the largest |t|
values, the ratio |t|/s is really rather small so that we are in
a domain closer to the usual Regge kinematics than to that of
perturbative QCD
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“world” value α′
P 	 0.25GeV−2 and this turns out to be,

indeed, the result of the fit (see Sect. 4.2).
As a last comment, we recall that, in the context of the

choice of the eikonalization procedure, a singular solution
is, in principle, possible, whereby the Odderon dominates
over the Pomeron [15]. For the sake of completeness, we
have also tried this option, unphysical as this appears but,
as expected, such a possibility is ruled out by the results
of the fits; the fit with an Odderon dominating over the
Pomeron is rather poor and unacceptable.

3 Eikonalization procedures

In eikonal models, the scattering amplitudes are expressed
in the impact parameter (“b”) representation. First, one
defines the Fourier–Bessel (FB) transform of the Born am-
plitude

hp̄p
pp(s, b) =

1
2s

∫ ∞

0
ap̄p

pp(s,−q2)J0(bq)qdq with

q =
√−t. (14)

This is related to the eikonal function (“eikonal” for
brevity) by

χp̄p
pp(s, b) = 2hp̄p

pp(s, b). (15)

The (complete) analytical forms of the Born amplitudes
(both (M) and (D)) in b space are given in Appendix A.

In all eikonalization procedures, one first derives the
eikonalized amplitude H p̄p

pp in the b representation; the in-
verse FB transform leads then to the usual eikonalized
amplitude in the s–t space

Ap̄p
pp(s, t) = 2s

∫ ∞

0
H p̄p

pp (s, b)J0(b
√−t)bdb. (16)

The main technical problem of eikonalization is the deriva-
tion of H p̄p

pp (s, b) once hp̄p
pp(s, b) are given. In what follows

we make explicit this step in, we believe, the most general
form so far derived.

3.1 Ordinary and quasi-eikonalization

In the ordinary eikonal (OE) formalism, H p̄p
pp (s, b) is the

sum over all rescattering diagrams in the approximation
when there are only two nucleons on the mass shell in any
intermediate state,

H p̄p
pp,OE(s, b) =

1
2i

( ∞∑
n=1

[2ihp̄p
pp(s, b)]

n

n!

)
. (17)

This limitation neglects the possibility of taking multipar-
ticle states into account. In the quasi-eikonal (QE) proce-
dure [14], the effect of these multiparticle states in the
various exchange diagrams is realized introducing one ad-
ditional “weight” parameter λ and the eikonalized ampli-
tude in the b representation (17) is replaced by

H p̄p
pp,QE(s, b) =

1
2i

∞∑
n=1

λn−1 [2ih
p̄p
pp(s, b)]

n

n!
. (18)

The above series is meant to represent the sum of all pos-
sible multiple exchanges of Pomerons, Odderons and sec-
ondary Reggeons (n = 1 corresponds to the Born approx-
imation, n = 2 to double exchanges, etc...). Its explicit
analytical form is

H p̄p
pp,QE(s, b) =

1
2iλ

(
exp[iλχp̄p

pp(s, b)]− 1
)
. (19)

As is obvious, the value λ = 1 corresponds to OE, which
appears, therefore, as a particular case of QE.

However, it is not clear why all intermediate states be-
tween the exchanges of two Pomerons or two Odderons
(or between one Pomeron and one Odderon) could be de-
scribed by just one and the same parameter λ or, differ-
ently stated that all the weights for the various interme-
diate internal couplings (two Pomerons, two Odderons or
one Pomeron and one Odderon) should be the same. It
would appear more “natural” that the various exchanges
should require different weights. Differently rephrased, in
the QE procedure, we do not distinguish intermediate
states between P–P , O–O and P–O exchanges. Giving
up this assumption gives rise to a new kind of general-
ized eikonal (GE) procedure where all these intermediate
states may have different weights.

3.2 Generalized eikonalization

3.2.1 With 3 λ: λ±, λ0

Consider again the separate form of the amplitude (1),
and let the crossing-even and crossing-odd input in the b
representation be

h± ≡ h±(s, b) =
1
2s

∫ ∞

0
dqqJ0(bq)a±(s,−q2),

q2 = −t. (20)

Here, postponing for a moment the consideration of the
most general scheme (5) when secondary Reggeons are
included, we temporarily simplify the notation for the
crossing-even and the crossing-odd part as if they were
made by just the Pomeron and the Odderon, respectively
(later, we will reinstate the complete contribution),

a+(s, t) = aP (s, t), a−(s, t) = aO(s, t). (21)

A priori, we have three different configurations of ex-
changes in the intermediate states which we show dia-
grammatically in Fig. 1 and where the various possibilities,
P–P , O–O and P–O are described, phenomenologically,
by three constants λ+, λ−, λ0.

With this notation, we can deduce

H p̄p(s, b) = h+ + h− +H[PP ] +H[OO]
+H[PO] +H[OP ], (22)

where (see [6] for the details of the derivation)
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Fig. 1. An example of a rescattering diagram containing the
possible intermediate states with Pomeron and Odderon ex-
changes

2iλ+H[PP ]

=
∞∑

n=2

n−1∑
m=1

m∑
i=1

1
(m+ n)!

(
n− 1

i

)(
m− 1
i− 1

)
zixnym

+
∞∑

n=2

∞∑
m=n

n−1∑
i=1

1
(m+ n)!

(
n− 1

i

)(
m− 1
i− 1

)
zixnym

+
∞∑

n=2

1
n!

xn

= z

∞∑
n=2

∞∑
m=1

xnym

(n+m)!
(n− 1)2F1(1−m, 2− n; 2; z)

+ex − x− 1, (23)

2iλ0H[PO]

=
∞∑

n=1

n∑
m=1

m∑
i=1

1
(m+ n)!

(
n− 1
i− 1

)(
m− 1
i− 1

)
zixnym

+
∞∑

n=1

∞∑
m=n+1

n∑
i=1

1
(m+ n)!

(
n− 1
i− 1

)(
m− 1
i− 1

)
zixnym

= z

∞∑
n=1

∞∑
m=1

xnym

(n+m)! 2F1(1−m, 1− n; 1; z) (24)

with

x = 2iλ+h+, y = 2iλ−h−, z =
λ2

0

λ+λ−
.

H[OO] is obtained from H[PP ] with the replacement
h+ ←→ h− and λ+ ←→ λ−, and H[OP ] = H[PO].

The amplitudeHpp(s, b) has the same form asH p̄p(s, b)
with the replacement h− ←→ −h−.

Unexpectedly, one can obtain a compact analytical
form from (22–24). Omitting all details of the calcula-
tions, which can be found in [6], the final expression for
the three-parameters eikonalized amplitudes are

H p̄p
pp,GE(s, b)

=
i

2(λ2
0 − λ+λ−)

{
a+ ei(λ+h+ ± λ−h−)

×
[
−a cosφ± + i

c+h+ ± c−h−
φ±

sinφ±

]}
, (25)

where we have introduced the three constants a and c±
defined as

a = 2λ0 − λ+ − λ−, (26)

c± = λ+λ− − 2λ2
0 − λ2

± + 2λ0λ±, (27)

in terms of the parameters of the model and the functions
(of s and b)

φ± =
√
(λ+h+ ∓ λ−h−)2 ± 4λ2

0h+h−. (28)

Considering a general case, when there are no any spe-
cial relations between λi, we have found in [6] that the
unitarity inequality

|H p̄p
pp,GE(s, b)| ≤ 1

can be satisfied, in general8, only if δO ≤ 0. Two special
cases, namely λ2

0 = λ−λ+ (see below) and λ+ = λ0 allow
δO to be positive. However, in all cases unitarity requires
the following restrictions:

δO ≤ δP , α′
O(0) ≤ α′

P (0), λ+ ≥ 1/2. (29)

As anticipated above, it is easy to prove that these results,
obtained in the case of two Reggeons (P and O), hold in
the case where four Reggeons are grouped two by two to
form a crossing-even (P + f) and a crossing-odd (O + ω)
contribution with the original definitions (5).

3.2.2 With two λ: λ±

A considerable simplification is brought about if the fac-
torization λ0 =

√
λ+λ− is assumed (this is also treated in

great detail in [6]). In practice, the main advantage of this
particular case are simplified expressions for the required
amplitudes resulting in a significant gain in computer time
when fitting the data. In this case, the eikonalized ampli-
tude has the form

H p̄p
pp,GE(s, b)

= h+ ± h− +

(
h+
√

λ+ ± h−
√

λ−
h+λ+ ± h−λ−

)2

×
(
e2i(h+λ+±h−λ−) − 1

2i
− (h+λ+ ± h−λ−)

)
. (30)

From unitarity, either

δO ≤ 0, λ+ ≥ 1/2, with λ− arbitrary (31)

or
λ− = λ+ ≥ 1/2, with 0 ≤ δO ≤ δP . (32)

The second case, (32), coincides with the previously con-
sidered QE method.

8 The obvious inequalities |h−| � |h+| and |�eh+| �
|�mh+|, �mh+ > 0, which are valid at high energy, are as-
sumed
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3.2.3 Discussion of the method

Our eikonalization represents an effective treatment of
multiparticle intermediate states (both for the QE method
and for the GE one) whereby we confine ourselves to the
simplest case when the input amplitudes are purely elas-
tic9. In the most general case, we should also introduce
other amplitudes corresponding to different effective cou-
plings at the extreme left and right ends of diagrams when
the initial (or final) state in the corresponding vertex is not
a single proton (similarly for the “internal amplitudes” in-
side the n-Reggeon diagrams). These new types of ampli-
tude would be the analog of those considered in diffractive
dissociation (with not too high effective masses). By in-
tegration and summation over many intermediate states,
new amplitudes would be derived by modifying appropri-
ately each hi and λi. The important difference would be
that these new amplitudes would have different energy in-
dependent contributions to their slopes but, for large s
they would reduce to the present amplitudes. We will not
consider this additional complication here.

3.3 Rescattering series (in s–t space)

The fact that the eikonalization procedures discussed pre-
viously lead to close analytical forms ((19) or (25)) for the
amplitudes H(s, b), allows us, in principle, to use them in
the FB transform (16) in order to derive the completely
eikonalized physical amplitudes A(s, t). The compact an-
alytical expressions ((19) or (25)), however, require a very
time-consuming numerical integration. The infinite expan-
sions ((18) or (23), (24)), on the other hand, can be more
convenient if one has a rapid convergence of the rescatter-
ing series. Fortunately, this condition is fulfilled by both
the monopole and the dipole. These models are, therefore,
interesting candidates to test the number and quality of
exchanges necessary to give a final good accuracy in the
calculation of the observables.

To be specific, we rewrite the QE amplitude isolating
the Born term

Ap̄p
pp,QE(s, t) = ap̄p

pp(s, t) +
∞∑

n=2

λn−1ap̄p
pp;n(s, t), (33)

where from (14) and (16)

ap̄p
pp;n(s, t) =

−i
n!

s

∫ ∞

0

[
2i hp̄p

pp(s, b)
]n

J0(b
√−t)bdb. (34)

Each rescattering term can be calculated analytically only
in some specific cases, for example again in the monopole
or dipole models (see e.g. [18] for the dipole; the monopole

9 Only the final (eikonalized) amplitudes A(s, t) should be
used to make predictions or to compare with any measurable
quantity, not the input (Born) amplitudes a(s, t). Generally
speaking, every comparison with the data must be done us-
ing output amplitudes and this would hold also for inelastic
quantities (not considered here)

calculations are less involved). In practice, we find that a
finite number of ∼ 4 terms is sufficient to insure proper
convergence of the rescattering series (n ∈ [2, 5]).

In the GE case, we rewrite the amplitude as

Ap̄p
pp,GE(s, t) = ap̄p

pp(s, t) +
∞∑

n+=0

∞∑
n−=0

ap̄p
pp;n+,n−(s, t), (35)

where we have to compare (35) with (23), (24) to obtain
the identification. The analytical expressions for evaluat-
ing the double series are given in Appendix B in the (most
involved) case of the dipole model (Pomeron + Odderon
+ Reggeons).

In agreement with what we found for QE, the con-
vergence of the rescattering series for GE is obtained by
keeping only the four first terms (n± ∈ [0, 1]).

4 Results

As already mentioned, only the results for the dipole
model are shown in what follows.

4.1 Born input amplitude

We have verified that the general pattern remains always
the same [1]: a wisely chosen “Born” amplitude can repro-
duce the data very well but, depending on this choice, the
Pomeron (and the Odderon) becomes supercritical and
the Froissart–Martin bound is, in principle, exceeded. At
the Born level, secondary structures may or may not ap-
pear; when they do, they are generally due to an additive
contribution to the simple (monopole and dipole) models.
For completeness, given the simplicity of the approach,
we give in Table 1 the parameters of the fit. Surprisingly,
the Odderon intercept equals 1, as recently claimed [7].
The reader, however, should keep in mind that this Born

Table 1. Parameters of the dipole model fitted at the Born
level (dipole Pomeron i = P , dipole Odderon i = O vanishing
at t = 0, secondary Reggeons R = f, ω)

Pomeron Odderon

δi 0.071 0.0
α′

i (GeV
−2) 0.28 0.12

bi 14.56 28.1
ai −0.066 0.10
di 0.07 −0.06
γ (GeV−2) - 1.56

f Reggeon ω Reggeon

aR −14.0 9.0
bR (GeV−2) 1.64 0.38
αR(0) 0.72 0.46
α′

R (GeV−2) 0.50 0.50
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approach and its parameters should not be considered as
anything fundamental; they can be used as a shortcut for
giving a reasonable account of the existing data but hardly
to derive general properties.

4.2 Eikonalized models

A general feature of all eikonalizations models is that, even
when the original Born amplitude exceeds the unitarity
limit (recall that a good fit generally requires δP > 0),
this violation is removed upon eikonalizing.

We remark that the OE procedure does not change
the number of parameters chosen at the Born level; one
parameter (λ) is added within the QE procedure and two
(λ±) or three (λ±, λ0) within the GE procedure. Further-
more, we may easily reduce the GE model to the QE model
by setting λ+ = λ− = λ0 ≡ λ and the QE model to the
OE model by setting λ = 1.

We tested all procedures of eikonalization, either com-
plete or partial. In the latter case, typically, one may
choose not to eikonalize the Reggeons because they do
not induce a unitarity violation. Whatever the procedure
for eikonalizing, we find that the parameters obtained and
the conclusions are qualitatively the same.

From the best fit view point some comments may help
the reader:
(i) the set of experimental data which are very difficult to
reproduce with non-vanishing eikonalized dipole Odderon
are the ratios ρp̄p

pp(s, t = 0). This justifies our choice (9)
and (10) of a Born Odderon input vanishing at t = 0;
(ii) leaving the secondary Reggeon parameters free to be
adjusted considerably improves the quality of the fit to
the dip in the ISR energy domain.

4.2.1 Results of the OE and QE fits

Invariably (and surprisingly), ordinary eikonalization
(OE) leads to a fit which is poorer than in the Born case,
but secondary structures emerge.

The QE version of the dipole model improved with
respect to OE case is still poorer than the one obtained
at the Born level but one finds a good reproduction of the
data up to and including the dip for pp and the shoulder
for p̄p.

In the QE version with fixed trajectories for the sec-
ondary Reggeons, we find a “supercritical” Pomeron with
δP 	 0.06 (i.e. lower than the value found in [2]) and a
“critical” Odderon δO 	 −0.03 as expected. The slope
parameter for the Pomeron α′

P 	 0.25GeV−2 agrees with
the “world” value, and for the Odderon we find α′

O 	
0.11GeV−2. The single parameter characterizing the
method of quasi-eikonalization with respect to the ordi-
nary one is found close to its lower unitarity limit λ ∼ 0.5.
This, in practice, tends to reduce the effect of high multi-
ple exchanges.

Concerning the shape of the diffraction-like structures,
we find significant modifications due to QE with respect
to previous work [18] in which the OE method has been

used. Specifically, the dip–bump secondary structure shifts
towards somewhat lower |t| and delays its appearance till
higher energies are reached. More precisely, in the QE (i)
the first dip moves down from |t| ∼ 1.2GeV2 to 0.5GeV2

when s1/2 goes up from 60GeV to 14TeV; (ii) a break in
the slope appears around |t| ∼ 4.0GeV2 when the energy
is around 500GeV, becoming a shoulder and then a true
dip which recedes to |t| ∼ 1.5GeV2 when s1/2 increases
to 14TeV.

It is very instructive to compare the relative virtues
of OE and QE. Generally speaking, as repeatedly stated,
both eliminate conflicts with the unitarity limit and the
convergence of the rescattering series is comparable (see
above), but the QE method appears to cure some unde-
sirable features of the OE, regarding the quality of the
fit.

4.2.2 Results of the GE fits

We now discuss the generalization of the eikonalization
procedure with two or three parameters λ (instead of the
single one used for the QE case). The same Born ampli-
tude will be used and, once more, we report only the dipole
results.

The GE version with two λ parameters (and with fixed
Reggeon trajectories) leads to a good reproduction of the
data with well structured secondary dips. The values of the
various parameters are slightly different from the version
with one λ, in particular λ+ 	 0.5 and λ− 	 0.44.

The version with three λ parameters and fixed trajec-
tories for the secondary Reggeons also gives a good repro-
duction of the data. The situation about the secondary
diffractive structures is partly different; the break around
|t| 	 4GeV2 becomes a dip which moves to |t| 	 3GeV2

at TeV energies. The various parameters are close to those
of the previous (two λ) case; the value of δO remains non-
positive and moves further towards zero. For the three λ
we find λ+ 	 0.5, λ− 	 0.1, λ0 	 0.86.

The best fit, however, is obtained if we allow some
variation for the intercepts and slopes of the Reggeon tra-
jectories. The result appears as a slight violation of the
exchange degeneracy rule. The latter, however, not only
is nothing more than a purely empirical rule but, in ad-
dition, there are many and well known indications that
such a violation occurs when a fine analysis is performed
(of which our findings are just a confirmation). The val-
ues of the free parameters are collected in Table 2. We find
evidence for a supercritical Pomeron with δP 	 0.073 (i.e.
greater than the QE value). While the Pomeron slope pa-
rameter is quite standard, 	 0.27GeV−2, the Odderon’s
one is nearly zero, 	 0.05GeV−2. The three parameters
which characterize the generalized eikonalization proce-
dure are λ+ 	 0.5, λ− = 0.55 and λ0 = 1.24. Three points
are worth emphasizing:
(i) the Odderon intercept αO(0) − 1 ≡ δO consistently
turns out to be non-positive (in agreement with general
arguments [5]); in practice, however, the value obtained is
so small that we agree with the most recent QCD finding
[7];
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Table 2. Parameters of the dipole model fitted with the GE
procedure (see Table 1)

λ+ 0.5
λ− 0.55
λ0 1.24

Pomeron Odderon

δi 0.073 −0.005
α′

i (GeV
−2) 0.27 0.054

bi 9.0 26.6
ai −0.114 −0.019
di 0.165 −0.09
γ (GeV−2) − 1.37

f -Reggeon ω-Reggeon

aR −12.95 16.44
bR (GeV−2) 1.24 3.50
αR(0) 0.81 0.47
α′

R (GeV−2) 1.07 0.57

Table 3. Positions (|t| values) of the first two zeros of the real
part of the eikonalized even amplitude A second zero appears
around |t| ∼ 1.5GeV2 at s1/2 = 546GeV which moves to |t| ∼
1.25GeV2 at s1/2 = 1.8TeV

Energy 1st zero 2d zero
(GeV2) (GeV2)

546GeV 0.30 1.5
1800GeV 0.27 1.25
14TeV 0.23 0.95
40TeV 0.17 0.85

(ii) the real part of the even amplitude exhibits a zero
at small |t| values (typically, |t| 	 0.30GeV2 at s1/2 =
546GeV) which recedes towards zero as s1/2 increases
(typically |t| 	 0.27GeV2 at s1/2 = 1800GeV) and we
predict it around |t| 	 0.23GeV2 at s1/2 = 14TeV (see
Table 3).This result is in agreement with a general theo-
rem by Martin [8];
(iii) the eikonalized Odderon contributes so as to perfectly
reproduce the large-|t| region.

That the χ2/d.o.f.(	 7.1) remains pretty large is a
consequence of not having made any wise selection of the
data. The contributions to the χ2 coming from the var-
ious sets of observables are given in Table 4 for the GE
procedure. They are compared to the simple dipole model
results at the Born level discussed above. They show in
particular the improvements brought about, in general,
by the GE procedure as compared with the Born approx-
imation. In fact our fit is a compromise between a fit for
the pp data (with χ2 = 4.7) and a fit for the p̄p (with
χ2 = 3.6) separately. Of some interest to see which set
of the data drives the fit is the comparison between the
values of the various parameters derived from these two
fits with our global fit.

Fig. 2. Comparison with the data of the fit to total cross-sec-
tions for p̄p (full dots and solid line) and pp (hollow triangles
and dashed line) processes for the generalized eikonalization
(GE) procedure

The GE curves (calculated with the complete set of
parameters of Table 2) are shown in Figs. 2–5 and com-
pared with the data. Table 4 and Figs. 2–5 show that the
shortcomings of our fit lie mainly in the reproduction of
the p̄p data towards the lowest energies considered and, in
particular, for σtot(p̄p). Perhaps, one should simply elim-
inate from the fit the data below some reasonable value,
say 10GeV. This would considerably improve the relative
χ2 (also because it is the relative low energy values which
weight more) and would also be more consistent with the
fact that angular distributions are fitted only starting from
the ISR energies. The most distinctive qualities of the fit,
on the other hand, reside in reproducing the pp scattering
data at t = 0 and, both pp and p̄p angular distributions
over essentially the entire t domain including the dip re-
gion and high |t|.

4.2.3 Discussion of the GE fits

Summarizing, we find that, not surprisingly, generalized
eikonalization represents an improvement over both quasi-
eikonalization and a fortiori ordinary eikonalization. Thus,
our best fit is obtained with three λ parameters. It is of
some interest, of course, to compare our results with those
of other similar approaches. Unfortunately, these are not
very numerous and none is close to the extension of our ap-
proach. We will briefly compare with older [3] and more
recent contributions [25,26]. A strict comparison is not
easy, because the objectives of each approach differ and it
is not our aim to discuss relative virtues and shortcomings
of each work. The first series of papers [3] concerns com-
pletely eikonalized models. They are, however, factorized:
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Table 4. The partial contributions to the χ2 obtained by fitting the data with the GE
procedure compared to the simple dipole at the Born level (the parameters are in Table 2
and 1; they give χ2/d.o.f. 	 7.1 and χ2/d.o.f. 	 8.9, respectively)

Scattering Observable Number of points (N) (1/N)χ2
GE (1/N)χ2

Born

pp σtot 78 2.40 2.31
- ρ 50 4.27 2.42
- dσ/dt 23GeV 105 5.67 6.56
- - 27GeV 39 1.79 16.0
- - 31GeV 92 8.40 10.1
- - 45GeV 97 3.76 3.33
- - 53GeV 93 15.34 9.90
- - 62GeV 151 2.93 7.64

p̄p σtot 58 9.85 2.83
- ρ 15 2.75 1.21
- dσ/dt 31GeV 22 2.35 1.73
- - 53GeV 52 13.1 3.69
- - 62GeV 23 4.63 2.33
- - 546GeV 78 11.2 25.6
- - 630GeV 19 18.5 54.4

Fig. 3. Same as Fig. 2 for ρ ratios

their Pomeron eikonal function is the product of a func-
tion of s times a function of b; in addition, no Odderon
component is taken into account. This makes a proper
comparison quite difficult. In spite of this, it is interesting
to remark that the position of the zeros of the real part of
our eikonalized amplitude is quite close to that computed
in the Bourrely–Soffer–Wu model [8]. Concerning the so-
called QCD-inspired model of [25], we note that it deals
mainly with t = 0 data and the claim is made that their
fits allow one to calculate the differential elastic scatter-

Fig. 4. Comparison with the data of the fit to differential
cross-sections for pp process for the generalized eikonalization
(GE) procedure. A 10−2 factor between each successive curve
is omitted

ing cross-sections versus t at any s (only the prediction at
1800GeV is given, however). We have a different experi-
ence; when we first fit the t = 0 data and then use the
eikonal approach with the parameters thus obtained for
calculating the t �= 0 observables, we find that the angu-
lar distributions are, in general, not well reproduced. We
believe that a simultaneous fit of all data is necessary: in
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Fig. 5. Same as Fig. 4 for the p̄p process. The Tevatron data
are not fitted

our opinion, this is to be expected as a consequence of
rescattering effects. A specific example of this assertion is
illuminating: we can lower the χ2/d.o.f 	 7.1 mentioned
above down to 	 2.2 if we consider only the t = 0 data. In
this case the reproduction of the data at t=0 is very good,
but the remaining t �= 0 data are then poorly reproduced.
The model closest to ours is, perhaps, that of Petrov and
Prokudin [26] in which a simple Regge pole with ordinary
eikonalization without factorization in the eikonal func-
tion is considered. Their results are in agreement with our
OE monopole model discussed above which, however, as
we have mentioned, does not lead to a good agreement
with the nucleon–nucleon elastic scattering data (espe-
cially at high |t|-values).

To justify a posteriori the adequacy of our calcula-
tions with the GE procedure, not only we compare the
fitted observables with the data, but we discuss briefly
also the quantities which have not been included in the
best fit procedure. From the theoretical point of view, we
are not in conflict with any general high energy theorem
(such as unitarity) and the position of the zeros of the
real part of the amplitude is an automatic consequence
of our approach. From the experimental point of view, a
satisfactory agreement with data which have not been in-
cluded in the fit increases considerably our confidence in
further extrapolations. For example, the calculated angu-
lar distribution at s1/2 = 1800GeV is in agreement with
the Tevatron measurements (see Fig. 5) and the calculated
pp total elastic cross-section agrees with the cosmic rays
data (see Fig. 6). The extrapolations of the total cross-
section and of the ρ ratio are also shown in Fig. 6. The
angular distributions for the energies to be reached in the
near future [20] at LHC exhibit a secondary structure (see

Fig. 6. Calculated observables, within the GE dipole model,
versus the energy and compared to the data (cf. [1]): total
cross-section σtot (the cosmic ray data are not fitted) and the
ρ-ratio

Fig. 7. Extrapolations to RHIC and LHC energies of the cal-
culated pp differential cross-sections

Fig. 7); the same qualitative feature ia also present in the
fit with two λ parameters.

5 Concluding remarks

Let us try to answer some of the questions raised in the
Introduction. Of course, we do not have the final prescrip-
tion for the Pomeron. Many of the forms discussed above
give a good reproduction of the data; several of them (and
many others in the literature) seem to work well both at
the Born and at the eikonalized level (in particular, the
dipole Pomeron).

Often, the Born Pomeron is found to be supercritical
(δP > 0) which implies an intrinsic problem with unitar-
ity; this is removed by (all kinds of) eikonalization. Thus,
the rôle of eikonalization is very important for the asymp-
totic behavior of all physical quantities. In all cases the
eikonalization restores the correct high energy behavior of
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the supercritical Pomeron. While the data for total cross-
sections do not contradict the ln2 s behavior resulting from
the eikonalization of a supercritical Born Pomeron, they
are not incompatible with a ln s form. The inclusion in
the fit of the data at t �= 0 is absolutely necessary to get
an unambiguous conclusion on the behavior of all physical
quantities.

The presence of the Odderon contribution, as repeat-
edly emphasized, is necessary to reproduce well the an-
gular distributions data in the dip region and for large-|t|
values, but its contribution is required by the fit to be
negligible in the forward domain.

The problem of the Odderon intercept remains very
complicated but the general agreement, in LLA, is now
[4,5] that the Odderon intercept should be close to 1 with
δO < 0 or [7] δO = 0. This agrees with our findings (see
also [6]).

A burning question is whether or not it is possible to
get a definite prediction about the existence of secondary
structures. At the Born level, the presence or absence of
secondary structures rests on the specific properties of
the Born amplitude (like an oscillatory component in the
Pomeron amplitude). In this case, therefore, the predic-
tion of secondary structures appears to be quite model
dependent. The rôle of eikonalization is very important in
this context. In the dipole case, structures appear in the
angular distribution as soon as double Pomeron exchange
is taken into account; the trend consolidates when the
number of rescattering corrections n increases and takes
a definite form when several exchanges are included. This
appears to be the case in all eikonalization procedures.
We conclude that secondary structures are unambiguously
predicted by any eikonalization process. This reinforces
previous conclusions by other authors [3]. In fact, as em-
phasized by Horn and Zachariasen [17], oscillations in t
should be expected from the properties of Bessel func-
tions in the FB transforms unless some special feature of
the eikonal destroys them.

Of all eikonalization procedures discussed, GE with
three parameters leads to the best account of the data.

Finally, we emphasize that the real part of the even
amplitude at high energy has a zero in the small-t region,
as anticipated by a general theorem [8].

In conclusion, while we believe that LHC will definitely
prove (or disprove) the validity of our predictions of sec-
ondary structures and about the zero of the real part of
the even amplitude, we insist on how valuable it would
be to have both pp and pp̄ options available, at the same
machine and at the highest energies in order to check not
only our predictions but a whole host of theoretical high
energy theorems.
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Appendix

A Analytical Born amplitude in the b space

We now have to define the analytical expressions of the
Born amplitudes in b space

hp̄p
pp(s, b) = hf (s, b) + hP (s, b)± [hO(s, b) + hω(s, b)]

≡ h+ ± h− (A1)

from which we will derive the eikonalized amplitude. With
our choices of Born (s, t) amplitudes, all the analytical
FB transforms are readily obtained10; for the secondary
Reggeons

hR(s, b) =
1
2
aR

s̃αR(0)

s

exp
(

−b2

4BR

)
2BR

;

BR = α′
R ln s̃+ bR, R = (f, ω), (A2)

where we have defined BR in terms of the slopes bR in-
troduced earlier in (6). The Pomeron part depends on our
choice ((7) or (8)): for the monopole we would have

h
(M)
P (s, b) =

1
2
aP

s̃αP (0)

s

exp
(

−b2

4BP

)
2BP

;

BP = α′
B ln s̃+ bP , (A3)

while for the dipole

h
(D)
P (s, b) =

−iaP

4α′
P s0

×
(
e
r1,P δP − b2

4B1,P + dP e
r2,P δP − b2

4B2,P

)
. (A4)

For our Odderon monopole (9) we have

h
(M)
O (s, b) =

1
2
aO

s̃αO(0)

s

×
exp

(
−b2

4BO

)
2BO

−
exp

(
−b2

4B̃O

)
2B̃O

 , (A5)

where BO = α′
O ln s̃ + bO and B̃O = α′

O ln s̃ + bO + γ.
Finally, for our Odderon dipole (10)

h
(D)
O (s, b)

=
−iaO

4s0

(
e
r1,OδO− b2

4D1,O
r1,O

D1,O
− e

r1,OδO− b2

4D̃1,O
r1,O

D̃1,O

+ dOe
r2,OδO− b2

4D2,O
r2,O

D2,O
− dOe

r2,OδO− b2

4D̃2,O
r2,O

D̃2,O

)
.(A6)

10 Recall that the “couplings” af , aP are real and aω, aO are
imaginary
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We have defined

r1,i = ln s̃+ bi, r2,i = ln s̃, (i = P,O), (A7)

and

Bi,P = α′
P ri,P , Di,O = α′

Ori,O, D̃i,O = α′
Ori,O + γ,

i = 1, 2. (A8)

B GE dipole model and rescattering series
in s–t space

As mentioned in the text, the monopole and the dipole
model are useful to study various properties, such as the
convergence of the rescattering series expansion, together
with the effect of generalizing the eikonalization since each
rescattering term is tractable analytically. Here, we con-
sider only the dipole case as an example.

The OE dipole model has been investigated in [18]. The
extension to the QE case is straightforward. We rewrite
the GE amplitude as

Ap̄p
pp(s, t) = 2s

∫ ∞

0
H p̄p

pp (s, b)J0(b
√−t)bdb, (B1)

with

H p̄p
pp (s, b) = h+ ± h− +H[PP ]

+ H[OO] + 2H[PO]; (B2)

the rescattering contributions H[PP,OO,PO] are given
in (23) and (24). We split the Born contribution and the
rescattering series of the GE dipole model (with three λs)
which runs over the two indices n± from 0 to infinity

Ap̄p
pp,GE(s, t) = ap̄p

pp(s, t) +
∞∑

n+=0

∞∑
n−=0

ap̄p
pp;n+,n−(s, t).(B3)

Introducing the four partial contributions of the eikonal
function χ(s, b) by

h+ =
1
2
(χP (s, b) + χf (s, b)) ,

h− =
1
2
(χO(s, b) + χω(s, b)) , (B4)

known analytically from Appendix A and separating the
three contributions, we obtain in the GE dipole case

ap̄p
pp;n+,n−(s, t)

= is
(iλ+)n+(±iλ−)n−

(n+ + n− + 2)!
(
Fn+,n−(z) · I + Fn−,n+(z)

·II +Gn+,n−(z) · III
)
, (B5)

where we have introduced the hypergeometric functions
2F1 (with the real argument z = λ2

0/(λ+λ−)):

Fn±,n∓(z) = z(n± + 1)2F1(1− n∓,−n±; 2; z)
·(1− δn∓,0) + δn∓,0,

Gn+,n−(z) = z2F1(−n−,−n+; 1; z).

In (B5) we have also defined the inverse FB transforms

I = λ+

n++2∑
�=0

n−∑
m=0

(
n+ + 2

,

)(
n−
m

)
×Intn++2−�,n−−m,�,m(s, t), (B6)

II = λ−
n+∑
�=0

n−+2∑
m=0

(
n+
,

)(
n− + 2

m

)
×Intn+−�,n−+2−m,�,m(s, t), (B7)

III = ±2λ+λ−
λ0

n++1∑
�=0

n−+1∑
m=0

(
n+ + 1

,

)(
n− + 1

m

)
×Intn++1−�,n−+1−m,�,m(s, t). (B8)

Once again, in these expressions +(−) corresponds to p̄p

(pp);
(
n
k

)
is the binomial coefficient and Int (s, t) is the

following integral over the four components of the eikonal
function:

Intλ,µ,l,m(s, t) =
∫ ∞

0
χλ

P (s, b)χ
µ
O(s, b)χ

l
f (s, b)χ

m
ω (s, b)

× J0(b
√−t)bdb. (B9)

An analytic expression for this integral has been written
[18] in the case when the Odderon does not contain a
killing factor at t = 0. It is a straightforward exercise to
derive the complete analytical form from (B9).
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